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LEITER TO THE EDITOR 

Combined 8 and Riemann-Hilbert inverse methods for 
integrable non-linear evolution equations in (2 + 1) dimensions 

Zhuhan Jiang and R K Bullough 
Department of Mathematics, UMIST, PO Box 88, Manchester M60 1QD, UK 

Received 12 January 1987 

Abstract. We give a natural combination of 2 and Rjemann-Hilbert problem inverse 
methods for an nth-order scalar spectral problem which solves a number of integrable 
non-linear evolution equations in two space and one time (2 + 1) dimensions. The theory 
embraces the two Kadomtsev-Petviashvili equations and their lump solutions. 

It is probably fair to say that the integrable non-linear evolution equations ( N E E )  in 
one space and one time (1 + 1) dimensions are well understood [ l ,  21. Consequently, 
interest has shifted to (2+  1) dimensions and a number of physically significant 
equations have now been solved by inverse spectral methods ( ISM) .  These include the 
Kadomtsev-Petviashvili ( KP) [2,3], Davey-Stewartson ( DS) [4] and three-wave interac- 
tion (3w1) [1,2] equations. Although all of these NEE are completely integrable 
Hamiltonian systems in the sense of Liouville-Arnold [5], the ISM can become substan- 
tially more complicated in (2+ 1) dimensions: Manakov [6] pioneered the non-local 
Riemann-Hilbert (RH) problem method which solves KP-I [6,7], DS-I and 3w1 [8], but 
K P - 1 1  [9] and DS-11 [8] are solved by the 2 method originally due to Beals and Coifman 
[ 101. In the RH method one deals with eigenfunctions analytic (=halomorphic) or 
meromorphic in separated regions of the complex plane 43, but in the a method the 
eigenfunctions may be nowhere holo- or meromorphic. Caudrey [ 111 shows how these 
two different cases for K P  arise as the limit of (local) RH problems for integrable NEE 

in (1 + 1) dimensions. In this letter we show how certain (2+ 1)-dimensional integrable 
NEE are in general solved by a combination of 5 and RH methods. Basically our method 
is a method which exploits patches of local holo- (mero-)morphy. We note that the 
2 method has recently been extended from 2 + 1 to some higher-dimensional spectral 
problems [ 121 and our results may therefore generalise. 

This letter reports the steps of an ISM for an nth-order spectral problem derived from 

where n is an integer 3 2 ;  U is a non-zero complex number and the U, defined on R2 
are potentials vanishing at infinity. The U, depend also on time t and a number of 
(2 + 1)-dimensional NEE in Lax pair form [ L, A ]  = 0, L given by ( l ) ,  are already reported 
[ 131. When U = 0 the problem (1) is the (1 + 1)-dimensional problem well studied in 
[ 141. Conceptually (1) is a 5 problem on the whole of C, in general, but we shall show 
how it may be thought of as a combination of several a and RH problems. In fact, 
patches of local meromorphy of the eigenfunctions can determine certain of the ‘lump’ 
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solutions of the NEE,  or other regions which are not meromorphic but are characterised 
by a single real root of a certain polynomial Z(a, k) (see below) may do so. 

Amongst the NEE solved by (1) are the 'complex' K P  ( C K P )  equation 

( U ,  + 6~14, + u ~ ~ ~ ) ~  = - ~ c ~ u ,  

( U ,  - 5 v x v x x x  -20,  - ~ x x x x x ) x  = 5vxxxy  -5vyy + ( v , v , L  

( 2 )  

(+E @, for n = 2, and the generalised Sawada-Kotera (BSK) equation [13] 

(3) 5 2  

for n = 3. For simplicity we treat only these two NEE explicitly in this letter. Lax pairs 
for (2) and (3) have been given already [9,13]. However, existence of the Lax pair 
does not itself solve the NEE. In this letter we give the steps of the ISM for (1) for any 
n 3 2; we define the continuous part of the spectral data as well as the discrete part 
where this exists, and we then show how these data are inverted. As examples of the 
application of this ISM to NEE we use it to solve (2) and (3) and finally briefly remark 
on other N E E  solved in this way. The main results reported in this letter are specification 
of a complete set of spectral data Y for (1) (given in (18) below for any n) and (20) 
and (21) which together invert that data. 

We assume the usual boundary conditions, namely that the uj vanish 'fast enough' 
at infinity. Put q ( x ,  y ,  k)  = p(x,  y, k )  exp (ikx -i"o-'k"y) in (1). Then this reduces to 
the spectral problem on the k plane (k E @) 

and D(k)=a,+ik.  We have to find a set of spectral data Y for (4) from which the 
14, can be recovered by inversion. To this end the Green function G(x, y,  k)  satisfying 

[D"(k)-(ik)"+ad,]G(x,y, k )  = -S(x)S(y) ( 5 )  

is easily found by Fourier transformation as 
00 

G(x,y, k )  = -(27ru)-' sgn(y) exp[iax+iR(a, k)yJB(yZ(a, k)) d a  (6) I_, 
where R(a,  k)=i"+ ' [ (a+k)"-k"]u- ' ,  Z(a, k ) = I m R ( a ,  k) and e (x )= l (x>O) ,  
=O(x d 0); sgn(x) = e(x) - e(-x). The zeros of Z(a, k)  play a crucial role in the theory. 

Let the set re be the zeros of Z(a, k) for k E C and every real a. If i"+'u-l is real 
this set proves to be the whole of the real line R of the k plane; otherwise it is the 
empty set 0. r,=R proves to be an essential boundary in the theory: if re =R we 
have to define two limiting kernels G*(x, y, k )  = limcEC-.+k G(x, y ,  I )  for any k E C* U R, 
where @* are the upper (lower) half planes of @, respectively. The corresponding 
eigenfunctions p* of (4) on @ * u R  are then given by 

where * denotes convolution with respect to both space variables, i.e. g * h = 
g(x ,y)*  h ( 5 , 7 ) ~ I I ~ ~ g ( x - 5 , ~ - 7 ) h ( 5 ,  7 ) d t d q .  The eigenfunctions p* are there- 
fore bounded with respect to the space variables and p* + 1 as k + CO. For notational 
simplicity we shall use p for p+ when k E C+ and p = p -  when k E @ -  U R. 
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Now let a , ( k )  ( J  = 1, .  . . , N )  be all of the (continuous in k) complex zeros of the 
polynomial I ( a ,  k)a- '  (the obvious zero a = O  of I ( a ,  k )  is of no interest). There are 
N such zeros for every k, while if in+'a-' is real N = n -2; otherwise N = n - 1. To 
simplify here we suppose a, simple. Then, in general, the k plane divides into regions 
where there are 0,2, . . . , N real (simple) zeros ( N  even), or 1,3, . . . , N real zeros ( N  
odd). The a method works with the operator a = a / a f = t  (a/ak,+ia/ak,) with k = 
k,+ik,, and f = cc. The holomorphic functions f satisfy af = 0; the meromorphic 
functions also do so (except at the poles). By applying to the Green function G we 
show that 

where I, =aI / aa  (Iu # 0 at a = aj for simple aj) and pj(x, y, k) = 
aj(k)x+R(aj(k) ,  k ) y ;  T(z), z E C, is a function which is unity z E Iw and is zero 
otherwise. From (8) and (7) together we then find the 'defect of holomorphy' 

for k E C/re;  the T, are defined by 

q( k )  = n [  (- 1)"/4T(a12]7( aj){[ ( aj + &)"-I - P-']/lZa ( aj, k)J} 
03 

-m 

for 1 s j s N and constitute a part of the continuous part of the spectral data Y we 
are looking for. Evidently, in regions where there are no real zeros a,, the T, vanish 
and a p / a f =  0 there. 

We are obliged to omit in this letter a number of intermediate steps including the 
demonstration of the 'symmetry' [9] of the kernel G, G(x, y,  k) exp[ipj(x, y,  k ) ]  = 
G(x, y,  k +  a,) used in deriving (9): the final results can all be verified directly. These 
results include identification of other continuous spectral data f( I, k ) ,  discrete spectral 
data y,, their time evolution and their inversion. We introduce the f(I, k) next. 

If r, = 0 the f( I, k )  vanish. If re = R we measure the jump over re by 
m 

where e( I, k, x, y )  exp[i( I - k)x - ina- ' ( In  - k")y]. Let E,  = sgn(i"+'a-') (which 
makes sense since re # 0). We introduce functions W(I, k, x, y )  and T ( k ,  I) by 
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The superposition principle shows that A p ( x ,  y,  k) T ( k ,  f )  W ( f ,  k, x, y )  df. 
However, these definitions also enable us to represent f( 1, k )  =f+( l, k) +f-( - l ,  k)  with 

f*(l, k )  = ~ ; ( 2 m a ) - '  sgn(l"-'- T ( S s )  
-m 

x y2 U,(&, T)D"(*l)e(l, * l ,  5, ~ ) w ( s ,  5 5,771 d5 d 7  ds  (14) 
m =O 

in which E ;  = 0 ( n  even), otherwise E :  = E,. Moreover, if we define further 'inverse' 
data T, by 

T*(l, k ) = ( 2 = ~ ) - '  e(&&, sgn(k"-'-l"-')) 
n - 2  

m =O 
m 

-m 

the spectral data f(l, k)  can be simply solved for this inverse data through an integral 
equation 

CO 

f( I, k )  + [ T- ( f, s )f( s, k) ds  = T+( f, k) - T- ( f, k) (16) 
-CO 

(( l, k)  E W2). This way the f( I, k )  are calculated from the U , .  

We now turn to the discrete data: in the different regions 9 p may be meromorphic 
with poles (here assumed simple for simplicity) when and only when there are no real 
zeros aj in 9. For k, E 9 and 9 meromorphic we find we can define discrete data y, 
through 

lim [ p ( x , y ,  k ) - t + h , ( x , y ) ( k - k , ) - ' ] =  -i(x+na-'i"+'k;-'y+ y,)Jlr(x,y) (17) 
k s a - k ,  

where t+!q(x,y) is the residue at the pole k,. This definition then extends to those 9 
where there are real zeros. However, we then find for consistency that there are only 
two cases: either  ER (and N is odd) and there is one real zero a1 = - ( k + z ) ,  or 
there are no real zeros (and N is even). 

To summarise: we have now defined a set of spectral data for the spectral problem 
(4) 

(18) 
which can be calculated from the potentials U,, 0 s  m 6 n -2. At most there is only 
the one T,(z), Tl(z), non-vanishing in regions 9 containing any of the k,. The real 
line R is an essential boundary re and if re = 0 the f(l, k) vanish. We need take no 
account of the boundaries of the regions where some of the T, jump, since the are 
bounded in their neighbourhoods and appear later only under integral signs. We have 
still to show that the set Y is sufficient to determine all the U, and to invert Y to 
regain the U , .  

Since p ( x ,  y,  k) is continuous in these neighbourhoods in C/T, we can use the 
generalised Cauchy formula (derived from Stokes's theorem) [9] 

9 '={T,(z) ,z~C)/T' , , j=l ,  ..., N;f(l, k ) E R ;  k , ,y , , I= l ,  ..., N ' }  
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for an arbitrary simply connected region w c @ to obtain the following linear integral 
equation: 

a2 

-W 

where dz A d i  = -2idzRdzl, and we invoke p(  k) + 1 as k + CO. Furthermore, under the 
limit k +  k,, (20) becomes with the help of (17) (1 s j s  N ' )  

-i(x+u-'ni"+'kj"-'y+ rj)+, 

c 

x p(x, y ,  z + CY,(Z))(Z - k,)-' dz A di? 

-m 

The two equations (20) and (21) provide the fundamental integral equations for the 
inverse spectral transform from Y to p :  the function p then determines the U, by 
using the expansion p - 1 +pl (x ,  y)k- '+.  . . derived from (7) put into (4): p l  = 
limk+a2 ( p  - 1)k. 

We turn to the application of these equations to the solution of integrable NEE: 
we take equations (2) and (3) as examples. We have to find the zeros of Z(a, k ) a - ' .  
When n = 2 they are given by a = -2( k + Eei*)/( 1 + eio) (@ = 2 arg a+ n?r) so there 
are no real zeros iff ei* = -1. There are then no T j  anywhere in @, the integral over 
@ vanishes in (20) and (21), and the inverse spectral problem reduces to the solution 
of the usual non-local RH problem which solves the KP-I equation (this is equation (2)  
with U = i [3,6,7,9]). Because integrals over C do not appear, (20) and (21) can be 
solved on the smaller region R of C. The contributions of simple poles in meromorphic 
regions @+, Q=- yield the known lump solutions [7]. 

Otherwise N = 1, and there is always one real root for any other Cp. This includes 
the KP-11 equation with U = -1 [9] and aI = - (k+ E) .  Since T,(k) # 0, p is nowhere 
meromorphic: r, = 0, thef(I, k) vanish and (20) and (21) reduce to the usual 2 solution 
[9]. Lump solutions are still possible in principle for U = -1 and it is therefore 
noteworthy that if, with f(l, k )  = 0, we also formally set TI( k )  = 0, we recover the 
singular one-lump solution of [15] by taking N = 2  with k 2 = E l  and solving (21) 
algebraically. 

The CKP equation (2) has the Lax representation [ L, A]  = 0 with 
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and from this the evolution of the spectral data is found to be (cases U = i, U = -1 only) 

TI vanishes for u = i ( K P - I )  and both the f(I, k) and (for non-singular lumps) the kJ 
and y, vanish for r =  -1 ( K P - 1 1 ) .  We have proved elsewhere [ 5 ]  that equations (23) 
are just Hamilton's equations for canonical combinations of these spectral data: 
IT,(z, t)12 are action variables for KP-11 and If(Z, k, t ) I 2  with the kj are action variables 
for KP-I;  it is plain from (23) that they are all constants of the motion. Finally, by 
(20) and (21) p is found from these data, 9, and U is then found from U = -2iax limk,, 

The case n = 3 is analysed similarly: the g s K  equation (3)  has Lax representation 
[ L , A ] = O w i t h L = a ~ + u a , + a a , ,  u = u , , a n d a = l .  Thusr ,=W, N = l  andthereis  
one real zero (which is a ,  = - (k+ E ) ) .  The spectral data Y =  { T,(z,  t ) ;  f(I, k, t); k,, yj ,  
1 s j  s N'}  and there are lump solutions. The data 9 prove to evolve as 

[ A x ,  Y, t )  - Ilk. 

df( I, k, t )  = 9i( k5 - I')f( Z, k, t )  a TI -(z, t)=9i(z5+t5)Tl(z,  t) 
a t  a t  

1- ak. 
a t  a t  

-' ay. = -45k," -0 

with all of IT,(z, t ) l ,  If(k, I ,  t ) l  and the k j  constants of the motion. This example is 
therefore a genuine combination of RH and 5 problems in the sense of this letter: p 
is found similarly as for KP so is given by 

u(x, y, t )  =a,( & 11 T,(z, t )  exp( -i(z + Z)x - i(z3 - Z3)y]p(x, y, t, - 5 )  dZ A dz 
c 

m 

+L 11 f( I ,  s) exp[i( Z - s )x  + i(Z3 - s3)y]p(x, y, t, 1) ds  dZ 
2T 

The corresponding equation with U = i has re = 0, N = 2 and regions with two and 
zero real roots. It can have poles only in the latter and p is meromorphic there: 
Y = { T , ,  T2; kj, yj ,  l < j s N ' } ; f = O .  

Finally we note that the generalised Gardner equation U,, +6/3uux - i a 2 u : +  
3a;'u,, -3auxa;'u, + U, = O  has a Lax pair with, for n = 2, the term un-,a:-' added to 
L in (1) [ 131. We shall report other methods to handle this case. For /3 = 0 it contains 
a modified KP equation of considerable current interest [ 161. 

A comprehensive account of the ISM for (1) reported in this letter and of its 
applications to integrable N E E  will be given elsewhere. 
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